
1

Error Detection

and

Correction 2

2

The Hamming distance between two

words is the number of differences

between corresponding bits.

Note

3

Let us find the Hamming distance between two pairs of

words.

1. The Hamming distance d(000, 011) is 2 because

Example 1

2. The Hamming distance d(10101, 11110) is 3 because

4

The minimum Hamming distance is the

smallest Hamming distance between

all possible pairs in a set of words.

Note

5

Find the minimum Hamming distance of the coding

scheme in Table 10.1.

Solution

We first find all Hamming distances.

Example 2

The dmin in this case is 2.

6

Find the minimum Hamming distance of the coding

scheme in Table 10.2.

Solution

We first find all the Hamming distances.

The dmin in this case is 3.

Example 3

7

To guarantee the detection of up to s

errors in all cases, the minimum

Hamming distance in a block

code must be dmin = s + 1.

Note

8

The minimum Hamming distance for our first code

scheme (Table 1) is 2. This code guarantees detection of

only a single error. For example, if the third codeword

(101) is sent and one error occurs, the received

codeword does not match any valid codeword. If two

errors occur, however, the received codeword may

match a valid codeword and the errors are not detected.

Example 4

9

Our second block code scheme (Table 2) has dmin = 3.

This code can detect up to two errors. Again, we see that

when any of the valid codewords is sent, two errors

create a codeword which is not in the table of valid

codewords. The receiver cannot be fooled.

However, some combinations of three errors change a

valid codeword to another valid codeword. The receiver

accepts the received codeword and the errors are

undetected.

Example 5

10

Geometric concept for finding dmin in error detection

11

Geometric concept for finding dmin in error correction

12

To guarantee correction of up to t errors

in all cases, the minimum Hamming

distance in a block code

must be dmin = 2t + 1.

Note

13.

A code scheme has a Hamming distance dmin = 4. What

is the error detection and correction capability of this

scheme?

Solution

This code guarantees the detection of up to three errors

(s = 3), but it can correct up to one error. In other words,

if this code is used for error correction, part of its

capability is wasted. Error correction codes need to have

an odd minimum distance (3, 5, 7, . . .).

Example 6

14.

LINEAR BLOCK CODES

Almost all block codes used today belong to a subset

called linear block codes. A linear block code is a code

in which the exclusive OR (addition modulo-2) of two

valid codewords creates another valid codeword.

Minimum Distance for Linear Block Codes

Some Linear Block Codes

Topics discussed in this section:

15.

In a linear block code, the exclusive OR

(XOR) of any two valid codewords

creates another valid codeword.

Note

16

Let us see if the two codes we defined in Table 1 and

Table 2 belong to the class of linear block codes.

1. The scheme in Table 1 is a linear block code

because the result of XORing any codeword with any

other codeword is a valid codeword. For example, the

XORing of the second and third codewords creates

the

fourth one.

2. The scheme in Table 2 is also a linear block code.

We can create all four codewords by XORing two

other codewords.

Example 7

17

In our first code (Table 1), the numbers of 1s in the

nonzero codewords are 2, 2, and 2. So the minimum

Hamming distance is dmin = 2. In our second code (Table

10.2), the numbers of 1s in the nonzero codewords are 3,

3, and 4. So in this code we have dmin = 3.

Example 8

18

A simple parity-check code is a

single-bit error-detecting

code in which

n = k + 1 with dmin = 2.

Even parity (ensures that a codeword

has an even number of 1’s) and odd

parity (ensures that there are an odd

number of 1’s in the codeword)

Note

19

Table 1 Simple parity-check code C(5, 4)

20

Encoder and decoder for simple parity-check code

21

Let us look at some transmission scenarios. Assume the

sender sends the dataword 1011. The codeword created

from this dataword is 10111, which is sent to the

receiver. We examine five cases:

1. No error occurs; the received codeword is 10111. The

syndrome is 0. The dataword 1011 is created.

2. One single-bit error changes a1 . The received

codeword is 10011. The syndrome is 1. No dataword

is created.

3. One single-bit error changes r0 . The received

codeword

is 10110. The syndrome is 1. No dataword is created.

Example 9

22

4. An error changes r0 and a second error changes a3 .

The received codeword is 00110. The syndrome is 0.

The dataword 0011 is created at the receiver. Note that

here the dataword is wrongly created due to the

syndrome value.

5. Three bits—a3, a2, and a1—are changed by errors.

The received codeword is 01011. The syndrome is 1.

The dataword is not created. This shows that the

simple

parity check, guaranteed to detect one single error, can

also find any odd number of errors.

Example 9 (continued)

23

A simple parity-check code can detect an

odd number of errors.

Note

24

All Hamming codes discussed in this

book have dmin = 3 (2 bit error detection

and single bit error correction).

A codeword consists of n bits of which k

are data bits and r are check bits.

Let m = r, then we have: n = 2m -1

and k = n-m

Note

25

Two-dimensional parity-check code

26

Two-dimensional parity-check code

27

Two-dimensional parity-check code

28

Table 2 Hamming code C(7, 4) - n=7, k = 4

29.

Modulo 2 arithmetic:

r0 = a2 + a1 + a0

r1 = a3 + a2 + a1

r2 = a1 + a0 + a3

Calculating the parity bits at the transmitter

:

Calculating the syndrome at the receiver:

s0 = b2 + b1 + b0

s1 = b3 + b2 + b1

s2 = b1 + b0 + b3

30

Figure 12 The structure of the encoder and decoder for a Hamming code

31.

Table 5 Logical decision made by the correction logic analyzer

32.

Let us trace the path of three datawords from the sender

to the destination:

1. The dataword 0100 becomes the codeword 0100011.

The codeword 0100011 is received. The syndrome is

000, the final dataword is 0100.

2. The dataword 0111 becomes the codeword 0111001.

The received codeword is: 0011001. The syndrome is

011. After flipping b2 (changing the 1 to 0), the final

dataword is 0111.

3. The dataword 1101 becomes the codeword 1101000.

The syndrome is 101. After flipping b0, we get 0000,

the wrong dataword. This shows that our code cannot

correct two errors.

Example 13

33

We need a dataword of at least 7 bits. Calculate values

of k and n that satisfy this requirement.

Solution

We need to make k = n − m greater than or equal to 7,

or 2m − 1 − m ≥ 7.

1. If we set m = 3, the result is n = 23 − 1=7 and k = 7 −

3,

or 4, which is < 7.

2. If we set m = 4, then n = 24 − 1 = 15 and k = 15 − 4 =

11, which satisfies the condition k>7. So the code is

Example 14

C(15, 11)

Burst Errors
 Burst errors are very common, in particular in

wireless environments where a fade will
affect a group of bits in transit. The length of
the burst is dependent on the duration of the
fade.

 One way to counter burst errors, is to break
up a transmission into shorter words and
create a block (one word per row), then have
a parity check per word.

 The words are then sent column by column.
When a burst error occurs, it will affect 1 bit
in several words as the transmission is read
back into the block format and each word is
checked individually.

 34

35.

Figure 13 Burst error correction using Hamming code

36.

CYCLIC CODES

Cyclic codes are special linear block codes with one

extra property. In a cyclic code, if a codeword is

cyclically shifted (rotated), the result is another

codeword.

Cyclic Redundancy Check

Hardware Implementation

Polynomials

Cyclic Code Analysis

Advantages of Cyclic Codes

Other Cyclic Codes

Topics discussed in this section:

37.

Table 6 A CRC code with C(7, 4)

38.

Figure 14 CRC encoder and decoder

39.

Figure .15 Division in CRC encoder

40.

Figure 16 Division in the CRC decoder for two cases

41.

Figure 17 Hardwired design of the divisor in CRC

42.

Figure 18 Simulation of division in CRC encoder

43.

Figure 19 The CRC encoder design using shift registers

44.

Figure 20 General design of encoder and decoder of a CRC code

Using Polynomials

 We can use a polynomial to represent a
binary word.

 Each bit from right to left is mapped onto a
power term.

 The rightmost bit represents the “0” power
term. The bit next to it the “1” power term,
etc.

 If the bit is of value zero, the power term is
deleted from the expression.

 45

46.

Figure 21 A polynomial to represent a binary word

47

Figure 22 CRC division using polynomials

48

The divisor in a cyclic code is normally

called the generator polynomial

or simply the generator.

Note

49

In a cyclic code,

If s(x) ≠ 0, one or more bits is corrupted.

If s(x) = 0, either

a. No bit is corrupted. or

b. Some bits are corrupted, but the

decoder failed to detect them.

Note

50

In a cyclic code, those e(x) errors that

are divisible by g(x) are not caught.

Received codeword (c(x) + e(x))/g(x) =

c(x)/g(x) + e(x)/gx

The first part is by definition divisible the

second part will determine the error. If

“0” conclusion -> no error occurred.

Note: that could mean that an error went

undetected.

Note

51

If the generator has more than one term

and the coefficient of x0 is 1,

all single errors can be caught.

Note

52

Which of the following g(x) values guarantees that a

single-bit error is caught? For each case, what is the

error that cannot be caught?

a. x + 1 b. x3 c. 1

Solution

a. No xi can be divisible by x + 1. Any single-bit error

can

be caught.

b. If i is equal to or greater than 3, xi is divisible by g(x).

All single-bit errors in positions 1 to 3 are caught.

c. All values of i make xi divisible by g(x). No single-bit

error can be caught. This g(x) is useless.

Example 15

53

Figure 23 Representation of two isolated single-bit errors using polynomials

54

If a generator cannot divide xt + 1

(t between 0 and n – 1),

then all isolated double errors

can be detected.

Note

55

Find the status of the following generators related to two

isolated, single-bit errors.

a. x + 1 b. x4 + 1 c. x7 + x6 + 1 d. x15 + x14 + 1

Solution

a. This is a very poor choice for a generator. Any two

errors next to each other cannot be detected.

b. This generator cannot detect two errors that are four

positions apart.

c. This is a good choice for this purpose.

d. This polynomial cannot divide xt + 1 if t is less than

32,768. A codeword with two isolated errors up to

32,768 bits apart can be detected by this generator.

Example 16

56

A generator that contains a factor of

x + 1 can detect all odd-numbered errors.

Note

57

❏ All burst errors with L ≤ r will be

detected.

❏ All burst errors with L = r + 1 will be

detected with probability 1 – (1/2)r–1.

❏ All burst errors with L > r + 1 will be

detected with probability 1 – (1/2)r.

Note

58

Find the suitability of the following generators in

relation to burst errors of different lengths.

a. x6 + 1 b. x18 + x7 + x + 1 c. x32 + x23 + x7 + 1

Solution

a. This generator can detect all burst errors with a

length

less than or equal to 6 bits; 3 out of 100 burst errors

with length 7 will slip by; 16 out of 1000 burst errors

of

length 8 or more will slip by.

Example 17

59

b. This generator can detect all burst errors with a

length

less than or equal to 18 bits; 8 out of 1 million burst

errors with length 19 will slip by; 4 out of 1 million

burst errors of length 20 or more will slip by.

c. This generator can detect all burst errors with a

length

less than or equal to 32 bits; 5 out of 10 billion burst

errors with length 33 will slip by; 3 out of 10 billion

burst errors of length 34 or more will slip by.

Example 17 (continued)

60

A good polynomial generator needs to

have the following characteristics:

1. It should have at least two terms.

2. The coefficient of the term x0 should

be 1.

3. It should not divide xt + 1, for t
between 2 and n − 1.

4. It should have the factor x + 1.

Note

61

Table 7 Standard polynomials

62

CHECKSUM

The last error detection method we discuss here is

called the checksum. The checksum is used in the

Internet by several protocols although not at the data

link layer. However, we briefly discuss it here to

complete our discussion on error checking

Idea

One’s Complement

Internet Checksum

Topics discussed in this section:

63

Suppose our data is a list of five 4-bit numbers that we

want to send to a destination. In addition to sending

these numbers, we send the sum of the numbers. For

example, if the set of numbers is (7, 11, 12, 0, 6), we send

(7, 11, 12, 0, 6, 36), where 36 is the sum of the original

numbers. The receiver adds the five numbers and

compares the result with the sum. If the two are the

same, the receiver assumes no error, accepts the five

numbers, and discards the sum. Otherwise, there is an

error somewhere and the data are not accepted.

Example 18

64

We can make the job of the receiver easier if we send the

negative (complement) of the sum, called the checksum.

In this case, we send (7, 11, 12, 0, 6, −36). The receiver

can add all the numbers received (including the

checksum). If the result is 0, it assumes no error;

otherwise, there is an error.

Example 19

65

How can we represent the number 21 in one’s

complement arithmetic using only four bits?

Solution

The number 21 in binary is 10101 (it needs five bits). We

can wrap the leftmost bit and add it to the four

rightmost bits. We have (0101 + 1) = 0110 or 6.

Example 20

66

How can we represent the number −6 in one’s

complement arithmetic using only four bits?

Solution

In one’s complement arithmetic, the negative or

complement of a number is found by inverting all bits.

Positive 6 is 0110; negative 6 is 1001. If we consider only

unsigned numbers, this is 9. In other words, the

complement of 6 is 9. Another way to find the

complement of a number in one’s complement

arithmetic is to subtract the number from 2n − 1 (16 − 1

in this case).

Example 21

67

Let us redo Exercise 10.19 using one’s complement

arithmetic. Figure 10.24 shows the process at the

sender and at the receiver. The sender initializes the

checksum to 0 and adds all data items and the

checksum (the checksum is considered as one data item

and is shown in color). The result is 36. However, 36

cannot be expressed in 4 bits. The extra two bits are

wrapped and added with the sum to create the

wrapped sum value 6. In the figure, we have shown the

details in binary. The sum is then complemented,

resulting in the checksum value 9 (15 − 6 = 9). The

sender now sends six data items to the receiver

including the checksum 9.

Example 22

68

The receiver follows the same procedure as the sender.

It adds all data items (including the checksum); the

result is 45. The sum is wrapped and becomes 15. The

wrapped sum is complemented and becomes 0. Since

the value of the checksum is 0, this means that the data

is not corrupted. The receiver drops the checksum and

keeps the other data items. If the checksum is not zero,

the entire packet is dropped.

Example 22 (continued)

69

Figure 24 Example .22

70

Sender site:
1. The message is divided into 16-bit words.

2. The value of the checksum word is set to 0.

3. All words including the checksum are

added using one’s complement addition.

4. The sum is complemented and becomes the

checksum.

5. The checksum is sent with the data.

Note

71

Receiver site:
1. The message (including checksum) is

divided into 16-bit words.

2. All words are added using one’s

complement addition.

3. The sum is complemented and becomes the

new checksum.

4. If the value of checksum is 0, the message

is accepted; otherwise, it is rejected.

Note

72

Let us calculate the checksum for a text of 8 characters

(“Forouzan”). The text needs to be divided into 2-byte

(16-bit) words. We use ASCII (see Appendix A) to

change each byte to a 2-digit hexadecimal number. For

example, F is represented as 0x46 and o is represented as

0x6F. Figure 10.25 shows how the checksum is

calculated at the sender and receiver sites. In part a of

the figure, the value of partial sum for the first column is

0x36. We keep the rightmost digit (6) and insert the

leftmost digit (3) as the carry in the second column. The

process is repeated for each column. Note that if there is

any corruption, the checksum recalculated by the

receiver is not all 0s. We leave this an exercise.

Example 23

73

Figure 25 Example 23

